Graded twisting of categories and quantum groups by group actions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Group Actions, Twisting Elements, and Deformations of Algebras

We construct twisting elements for module algebras of restricted two-parameter quantum groups from factors of their R-matrices. We generalize the theory of Giaquinto and Zhang to universal deformation formulas for categories of module algebras and give examples arising from R-matrices of two-parameter quantum groups.

متن کامل

Graded Quantum Groups

Starting from a Hopf algebra endowed with an action of a group π by Hopf automorphisms, we construct (by a “twisted” double method) a quasitriangular Hopf π-coalgebra. This method allows us to obtain non-trivial examples of quasitriangular Hopf π-coalgebras for any finite group π and for infinite groups π such as GLn(k). In particular, we define the graded quantum groups, which are Hopf π-coalg...

متن کامل

q-EUCLIDEAN SPACE AND QUANTUM GROUP WICK ROTATION BY TWISTING

We study the quantum matrix algebra R21x1x2 = x2x1R and for the standard 2×2 case propose it for the co-ordinates of q-deformed Euclidean space. The algebra in this simplest case is isomorphic to the usual quantum matrices Mq(2) but in a form which is naturally covariant under the Euclidean rotations SUq(2)⊗SUq(2). We also introduce a quantum Wick rotation that twists this system precisely into...

متن کامل

Group Actions on Algebras and Module Categories

Let k be a field and A a finite dimensional (associative with 1) k-algebra. By modA we denote the category of finite dimensional left A-modules. In many important situations we may suppose that A is presented as a quiver with relations (Q, I) (e.g. if k is algebraically closed, then A is Morita equivalent to kQ/I). We recall that if A is presented by (Q, I), then Q is a finite quiver and I is a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l’institut Fourier

سال: 2016

ISSN: 0373-0956,1777-5310

DOI: 10.5802/aif.3064